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The Fermi-Pasta-Ulare model of harmonic oscillators with cubic anharmonic interactions is studied from
a statistical mechanical point of view. Systemd\of 32 to 128 oscillators appear to be large enough to suggest
statistical mechanical behavior. A key element has been a comparison of the maximum Lyapunov coefficient
A max Of the FPUa model and that of the Toda lattice. For generic initial conditions,(t) is indistinguish-
able for the two models up to times that increase with decreasing eratdixed N). Then suddenly a
bifurcation appears, which can be discussed in relation to the breakup of regular, solitonlike structures. After
this bifurcation, thex ., of the FPU model appears to approach a constant, whila theof the Toda lattice
appears to approach zero, consistent with its integrability. This suggests that for generic initial conditions the
FPU a model is chaotic and will therefore approach equilibrium and equipartition of energy. There is, how-
ever, a threshold energy density(N) ~ 1/N2, below which trapping occurs; here the dynamics appears to be
regular, solitonlike, and the approach to equilibrium—if any—takes longer than observable on any available
computer. Above this threshold the system appears to behave in accordance with statistical mechanics, exhib-
iting an approach to equilibrium in physically reasonable times. The initial conditions chosen by Fermi, Pasta,
and Ulam were not generic and below threshold and would have required possibly an infinite time to reach
equilibrium. The picture obtained on the basis\gf,, suggests that neither the KAM nor the Nekhoroshev
theorems in their present form are directly relevant for a discussion of the phenomenology of therfrétiel
presented her¢S1063-651X%97)15105-4

PACS numbegps): 05.45+b; 05.20-y

I. INTRODUCTION was not observed. A variety of manifestly nonequilibrium
and nonequipartition behaviors was seen, including quasip-
Few problems have been studied so extensively over reeriodic recurrences to the initial state. In fact, a behavior
cent decades as the one devised originally by Fermi, Pasteeminiscent of that of a dynamical system with few degrees
and Ulam(FPU) in 1954 [1]. Their purpose was to check of freedom was found, rather than the expected statistical
numerically that a generic but very simple nonlinear many-mechanical behavior. The duration of their calculations var-
particle dynamical system would indeed behave for largéed between 10000 and 82 500 computation steps. These
times as a statistical mechanical system, that is, it wouldesults raised the fundamental question about the validity or
approach equilibrium. In particular, their purpose was to ob-at least the generally assumed applicability of statistical me-
tain the usual equipartition of energy over all the degrees oéhanics to nonlinear systems of which the system considered
freedom of a system, for generic initial conditions. To theirby FPU seemed to be a typical example. Most of the at-
surprise, for the system FPU considered—a one-dimensiongmpts to clarify this difficulty have approached the problem
anharmonic chain of 32 or 64 particles with fixed ends, andhs one in dynamical systems. These analyses have revealed
in addition to harmonic, cubic« mode) or quartic (3  many very interesting properties of the FPU system and un-
mode) anharmonic forces between nearest neighbors—thisovered a number of possible explanations for the resolution
of the observed conflict with statistical mechanics. The clas-
sical explanations ar@) the survival of invariant tori in the
*Also at INFN, Sezione di Firenze, Italy. Electronic address:phase space of a quasi-integrable sys(&#M theory) [2],

casetti@sns.it (i) the existence of Zabusky and Kruskal's solitons in the
Electronic address: mcerruti@arcetri.astro.it KdV continuum limit[3,4], (iii) the existence of an order-to-
*Also at INFM-FORUM, unitadi Firenze, and INFN Sezione di chaos transitior{5]. However, we do not believe that the

Firenze, Italy. Electronic address: pettini@arcetri.astro.it problem has as yet been entirely resolved. In particular, it is
$Electronic address: egdc@rockvax.rockefeller.edu the purpose of this paper to try to clarify the problem from a
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statistical mechanical point of view. That is, we will try to with increasing initial amplitude of a threshold, whokk
exhibit the reasons why this apparenkgna fidestatistical = dependence is entirely different from that estimated in the
mechanical system did not behave as such and, in particulafAM theory framework. Hence the source of FPU’s failure
what in our opinion the significance of this apparent failureis the fortuitous choice of initial conditions in a regular re-
is for the general validity of statistical mechanics. gion of phase space, below this critical energy.

There are a number of obvious questions related to the Thanks to the power of modern computers, we have con-

unstatistical mechanical behavior observed by FPU, whict§iderably extended the calculations performed in the past by
all address the generic nature of their results. various authors. We have been able to reconcile different,

() Was their time of integration long enough? and sometimes contradictory, aspects of the FPU dynamics,

(b) Was their dynamical system &f=32 or 64 particles 1nding that regular regions and a large “chaotic sea” can
in one dimension large enough, i.e., possessing a sufficie/fP€XISt in phase space. The lack of equipartition in the origi-
number of degrees of freedom, to qualify as a statistical mef@ FPU experiment is not representative of a global property
chanical system? qf phase space: apparently regular, solitonlike structures,

(c) Were the recurrence phenomefta within 3%) ob- similar to those of Zabusky and Kruskal, have a very long,

served by FPU, transient, or generic, i.e., possibly related t§0SSiPly infinite, lifetime below a stochasticity threshold,
a Poincargecurrence time? whereas, above the same threshold, they have only a finite

The search for answers to these questions made the wolietime. , ) L .
of FPU very seminal, spawning many new developments and By choosing more physically generic initial conditions,
connections in the theory of nonlinear dynamical systems!:€-+ fandom positions and momenta, a threshold energy for
such as the connection with continuum models based on tHE'€ Onset of chaos is detected, showing a rather strong ten-
Korteweg—de Vries equation, leading to solitd83 heavy ency to vanish at an increasing number of.degrees of free-
breathers, etc., or with few degrees of freedom models, lik&loM- Thus we have found strong evidence in support of the
the Haon-Heiles and the Toda lattid6]. For a recent re- Point of view that the so-called “FPU-problem” does not
view we refer to[7]. invalidate the(generig approach to equilibrium and the va-

The approach to equilibrium of the FPB model was lidity of equilibrium statistical mechanics. On the other hand,

studied extensively for various classes of initial conditionsthe existence Of, Iong-li\_/ing initial.s.tates far ffo‘.“ eq_uiliprium
may well have interesting, nontrivial physical implications.

by Kantzet al.[8] and recently by De Lucat al.[9]. A very
detailed picture has emerged from their work, as to the be-

havior of the FPUB model in its dependence on nonequilib- Il. MODEL AND RESULTS
rium initial conditions as well as the role played by low _ _ . _ .
frequency and high frequency mode-mode couplifit@] We have considered a one-dimensional lattice of unit

during its time evolution. Two threshold energies were idenmass particles interacting via nearest-neighbor forces with
tified, but the connection of all the very interesting and de-unit harmonic coupling constant, with fixed endpoints
tailed information obtained with the generic statistical me-(d:=0dn+1=0) and described by the Hamiltonian

chanical behavior of the FPI8 model remains unclear so

far. N
1 1
Thus, although the effort to resolve the so-called FPU H(p,q)= >, Epﬁ+ 5(Qk+1—Qk)2+%(Qk+1—CIk)3 ,
problem has led to enormous advances in our understanding k=1
of nonlinear dynamical systems, it has not yet, in our opin- @

ion, led to a full evaluation of the statistical mechanical rel-

evance of the FPU paradox, i.e., FPU’s original question hawhich is known as the FPd model. We can think of Eq1)

not yet really been answered. as the first anharmonic approximation to physical interatomic
It is commonly assertefl7] that the KAM theorem pro- potentials of the Morse or Lennard-Jones type.

vides the essential answer to FPU’s observations, i.e., for The cubic term is obviously responsible for the energy

sufficiently small nonlinearities and a class of initial condi- exchange among the normal modes of the harmonic part of

tions living on nonresonant tori, the FPU system behave&q. (1). The normal mode coordinates, obtained by a stan-

like an integrable system and is represented by deformed todard orthogonal transformation, read

in phase space. With increasing strength of the nonlineari-

ties, a progressive chaotic behavior appears, which would o\ 12N ik
ultimately lead to the expected approach to equilibrium and Q= (_) 2 qisin—Tr 2
equipartition[11]. N/ =1 N

Even though there are regular regions in phase space, the
existing estimates based on the KAM theorem are qualitagnq diagonalize the harmonic part of Ed).
tively different from what we found, indicating that the phys-  The Hamiltonian in these new coordinates becomes
ics of the FPU model is quite different from what is con-
tained in these estimates. This makes us believe, on the basis
of our numerical simulations, that it is the very special initial HP.Q)=
conditions chosen by Fermi and collaborators that make their ' e}
system belong to a regular region of phase space. If they had
chosen an initial excitation ten times larger, they could have

N
observed equipartition. This takes place via a disappearance +a 2 CkkK K)QQuQu|, 3
kf'k!/=1

N

1 1
§P§+§w§Q§
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where w, = 2sink#/2N) is the frequency of th&th normal  where the weightsv, are given by the fraction of the total

mode andP, = Q, are the conjugated momenta. The naturalharmonic energf, = 5(P+ »¢Qf) in thekth normal mode
unit of time with the choice of the units of E€l) is given by  [14],
the inverse of the fastest frequency of the harmonic part of

Eq. (1): Thin=27wna=7. In what followst=1 corre- E (1)
sponds to 4 of this fastest linear period. wi(t)=——— (6)
We have numerically integrated this model by means of a E Ei(t)
I

very efficient third order bilateral symplectic algoritHmh2]

that ensures a faithful representation of a Hamiltonian flow . ) o
and, with the adopted values of the rather large time steO thatS(t) reaches its maximum value when equipartition is
ranging from 0.01 to 0.1, keeps the total eneEgonstant attained. This entropy can be normalized as follows:

within an average fluctuation level &fE/E=10"8 without

drift. Such a high precision in numerical integration makes S(t) = Smax

the outcome of the very long runs that are reported in the n(t)= S(0) = Smay’ @
following reliable. The coupling constant was=0.25. In

order to give an idea of the computational effort that washence,=1 detects a “freezing” of the initial condition and
necessary to obtain the results reported in this paper, let uﬁ:O detects equipartition.

mention that the computation of the largest Lyapunov expo- By following the time relaxation ofy(t) we have ob-
nentsh, at low energy typically required integration times in yaineq some estimates of the equipartition timeat values
the interval 16-10° natural units of time: the longest runs ¢ 1 initial excitation amplituded ranging from 3 to 11.
lasted about 60 h of CPU time on an HP9000/735 computelqte thatA cannot be too large, since then the cubic part of

(about the same CPU time would be necessary on a CRAYe hotential becomes repulsive and the phase space trajec-
Y-MP compute). The CPU time amounted to about 4000 htories are “runaway” trajectories, nor cah be too small,

on the following computers: HP 9000/735, HP 9000/715gjncq then the relaxation times become too large to be deter-

ZUZ%OSPARCN’ Sun SPARCS, Digital Alphaserver 2000yneqd by our computations. However, two major difficulties

" " . arise with then method:(i) contrary to previously investi-
For what concerns the initial conditions, we begin by 7 0 y'op y

hoosi inal d L Fermi and collab ated systemfsl 5,16, the relaxation pattern of(t) does not
choosing single mode excitations as Fermi and collaboratorgy, ., ciearly when equipartition sets in, so that the equipar-

did in their original experiment, i.e., the initial displacementS;iqp, time is a fuzzy quantity(ii) if we somehowdefinethe
of the particles from their equilibrium positions are given byequipartition time by, for example, measuring the time
the fundamental mode needed forz(t) to drop below a threshold value, say
7=0.1, we find thatrz(€) ~ €2 (e=E/N is the energy den-
2mni sity). For the FPU caseA=1, €=0.002 41), we will show
Qi(O)IASiH<T), i=1,...N, (4)  (see Sec. Il Bthat the equipartition time is far too long a
time for numerical tests, since it would amount to about a
year's CPU time.

and the initial momentg;(0)=0 for i=1,... N. Fermi
et al. usedN=32, A=1, and mode numbar=1. B. Phase space trapping
Now the main question is, if we repeat the original ex-

periment, do we have any chance to find equipartition or any We have been able to overcome _the_se dlff!CU|tIeS by_fo-
clear tendency to it by using present-day fast computers? cusing on the development of chaoticity in the time evolution

To answer this question we cannot blindly make the Iong_of the system rather than on the attainment of equipartition.

est integration of the trajectories of the Hamiltonidn that The natural way of characterizing chaotic motloqs IS to
we can afford on a very fast computer: the absence of equf;ompute the Iarg_e_s‘g Lyapunov exponant Let us briefly
partition, even after a very long integration time, would not"€Member its definition. Let

be by itself conclusive for the nonexistence of equipartition i N .

for this model. Rather, one should make an estimate of the X=X(x% ... x5, i=1... N (8)
equipartition time alA=1 andN=32, and determine tha ) )
dependence of this time for larger valuesiofa large initial € @ given dynamical system, and denote by
excitation amplitude makes the anharmonicity of the system

larger, hence the mode-mode couplings stronger, so that a . N i C
faster relaxation to equipartition can be expected. & :kzl Jx®]€, i=1,... N ©)
A. Detecting energy equipartition its tangent dynamics equationZ;]=[oX'/ax"] is the Jaco-
bian matrix of[ X'], then the largest Lyapunov exponent

A possible method to numerically detect equipartition ofiS defined b
energy makes use of the spectral entrpp§] defined by y

N N im1|n||§<t)\| 10
S<t>=—k21 Wi (D) Inw,(t), (5) = Mo
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FIG. 1. \[PYt) (solid triangles and\ ]°%qt) (squaresare plot- FIG. 2. The relaxation times to equipartiti¢full square$ and

ted vs time forN=32 and energy density=0.0217[which corre-  the trapping timegopen squargsare plottedfor the FPUa mode)

sponds to an initial excitation amplitude=3 in Eq.(4)]. Dividing vs the energy density for N=32 and the initial conditions of Eq.

t on the horizontal axis byr gives the time in units of the fastest (4). The initial excitation amplitudes considered are, from left to

period of the harmonic part of the chaif,,= 7. right, A=2,3,4,5,8,10,11, respectively. The asterisk represents the
extrapolation of the equipartition time to the cade=1 (FPU's

By setting A[X(t),£(t)]=&"T[x(1)1¢/ éT¢=¢Te/¢T¢  onginal papef20)).

=1(d/dt)In(£"¢), A, can be formally expressed as a time

average, functions are so close to each other that the two are virtually

indistinguishable. Then, suddenly, they separate at
1t t=4x10: )\I"da(t) continues its decay toward zero, whereas
)\1=I|m§fod7A[x(7),§(T)], (1) \PPYt) tends to converge to a nonvanishing value. This
o makes it possible to define clearly what a trapping time in a
regular region of phase space is; moreover, its numerical
determination is unambiguous, as it can be deduced by sim-
1 & €t ply looking at Fig. 1. We attribute this dramatic difference to
M(t/v)z—z In(—), (12) the untrapping of the FI?U system from |§s regular region in
NAt=1 T [ét -0l phase space by escaping to the chaotic component of its
phase space.
The peculiar behavior ok ["Y(t) suggests therefore that
nintegrable motions, originated by one-mode initial exci-
tations, after a transient, possibly long, trapping in a regular
region of phase space, enter its chaotic component. The cha-
otic component of phase space, by the Poinéaeni theo-
rem [19], is connected, so that we may well expect that
equipartition is eventually attained on a finite, albeit possibly
very long, time scale.

which, in practice, is evaluated by computifig/]

wheret,=nAt (At is some time interva) up to a final time
ty, N=A, such that\,(t,) has converged to a reasonably no
asymptotic valug18]. A positive asymptotic value ol
obviously detects a chaotic dynamics, wheraagt)~t~*
corresponds to a nonchaotic dynamics.

We have exploited the existence of an integrable model
the Toda lattice, close to the FR&Jmodel. The Toda lattice
Hamiltonian reads, in the same units as used in(Eg.

N g 1 The precise nature of the trapping mechanism is unclear
H(p.q)= Z 24 exd —2a _ to us. One could either think that the trajectories stick close
(P.a) kzl 2P EZ{ 1 (G2~ ] to a KAM torus during the trapping time, or that, for ex-

ample, they are geodesics of a bumpy manifold to which an
, (13 N-torus has been differentiably glued by a tiny “bridge;” in
that case a geodesic, originating at any point of the
) ] ) ) o N-torus, is locally stable until it finds a path to escape from
and Fhe power series expansion of its potential coincides, Ughe torus. Another possible mechanism of trapping and es-
to third order, with the potential part of E(fL). . cape is discussed in Sec. Ill under poiu, in light of the
As the Toda lattice Hamiltonian describes an integrablejata discussed in the sequel of the present Section.

system, the numerical computation of the time behavior of | conclusion, once we observe that a trajectory enters the
the largest Lyapunov exponeig(t) must reveal the non- chaotic component of phase space, we are allowed to think
chaotic property of its dynamics. In particular, one mightihat equipartition will be eventually attained. In Fig. 2 the
wonder whether somedmformatlon can be obtained by comye|axation times to equipartitior:(e) and the trapping times
paring \f"(t) with X;°'Yt) for the same initial conditions, . (¢), evaluated for the FPW model, are shown. The re-
i.e.,{0;(0),pi(0)}, i=1,... N. This turns indeed out to be gylts refer toN=32 and initial conditions given by Eq4).

the case. In Fig. 1 we report, as an exampl§;(t) and  The initial excitation amplitudes range from 3 to 11. The
A1°%qt) in the caseN =32 ande=0.0217 for an initial con-  equipartition times appear to be between one and two orders
dition with A=3 in Eq. (4). Up until t=2X10° these two  of magnitude larger than the trapping times. If we extrapo-

+2a(Qr1— Q) — 1}
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FIG. 3. The trapping times;(€,N) at different values of energy FIG. 4. The largest Lyapunov exponeitg e,N) are shown for
densitye (i.e., at different values of the initial excitation amplitudes different values of the energy densityand a sine wave initially
A), are reported. Open squares refer to the dase32 (A ranges  excited[Eq. (4)]. Open squares refer td=32 andn=1, full tri-
from 1.6 to 13, solid triangles refer ttl=64 (A ranges from 1.4to  angles toN=64 andn=2, open circles tdN=128 andn=4, re-

10), open circles refer tdl =128 (A ranges from 1.25 to)9respec-  spectively. The endpoints of the broken lines, marked by arrows,
tively. The endpoints of the broken lines are lower bounds for theare upper bounds for the FPU Lyapunov exponents=at.3x 10°
trapping time (the cutoff of the integration time is at (cutoff of the integration time The dotted vertical line at
t=4.3x10%). The dotted vertical line at=0.002 41 corresponds to ¢=0.002 41 corresponds #®=1 (FPU’s original paper
the initial excitation amplitudé&=1 of FPU’s original paper.

tweenh 1°%t) and\[PY(t) has been observed: the values of
late [20] the equipartition time to the case of FPU, we find \["" at t=4.3x10° (endpoints of broken lines in Fig. 4,
Te=4% 10 (as is indicated in Fig. 2 by an asterisk marked by arrowsare taken as upper bounds for the FPU-

Since we can consider the FRmodel as a third order Lyapunov exponents ant=4.3x10° is taken as a lower
expansion of a Lennard-Jones potential around its minimurhound for the trapping time of the FPU-phase pdiend-
we can tentatively extrapolate the equipartition times reJpoints of the broken lines in Fig. 3, marked by arrovioth
ported in Fig. 2 to a macroscopic system in three dimensions\1(e,N) (from here on, byx; we mearht"Y and 71(e,N)

As an example, we can roughly estimate what the physicadtrongly suggest the existence of BWrdependent threshold
equipartition time could be for alassicalxenon crystal at value of the energydensity, above which the motion is
zero temperature and only one normal mode initially excitedchaotic and below which the trajectories appear to be trapped
At €e=0.01, 7=~ 10° proper timegsee Fig. 2 corresponds to in a regular region of phase spafsochasticity threshold
about 103 s, using as proper time, obtained with standard(ST)].

Lennard-Jones parameters for xenon 219 2 s. The following approximate relationship betwe#&nand

e holds: e=0.002 412, therefore the threshold amplitudes
A; leading to chaos areA.(N=32)=1.62, A.(N=64)
=1.42,A.(N=128)=1.28, respectively.

We have evaluated the trapping timeg(e,N) for the The dotted line ak=0.002 41 corresponds to the initial
FPU « model at different values of both the energy densityexcitation amplitudeA=1 of FPU’s original paper. We see
e and of the number of degrees of freeddimWhenN was  that Fermi and co-workers chose an initial condition well
varied, we kept the wavelength of the initial excitation con-below this ST[20]. Figure 3 shows that if they had taken a
stant[i.e., n in Eq. (4) is taken proportional t&N: n=1 at  ten times larger amplitude, they would have observed equi-
N=32,n=2 atN=64, andh=4 atN=128|, and we excited partition during the integration time they used. This appears
only one mode at=0. The results are reported in Fig. 3. to us to be the explanation of the lack of statistical mechani-
With decreasing, first 71 tends to increase monotonically, cal behavior observed in the original FPU numerical experi-
then, abruptly, it displays an apparently divergent behaviorment.

In fact, when reaching critical threshold values, a very small A few more comments on these results are as follaws:
change ine suddenly gives an extremely steep increase irFig. 3 suggests that with increasimd;, 7(e,N) probably
77. This very steep increase of with decreasing suggests becomes less dependent adw [in fact the values of
at least a very narrow bottleneck in phase space, through;(e,N=64) are closer to those of;(e,N=128) than to
which the system can only escape with great difficulty. Wethose ofr(e,N=32)]; (ii) there is a narrow energy density
assume that this bottleneck is not an insurmountable barriemterval wherer; and \; oscillate, suggesting the transition
and for that reason, as well as to conform with previous usen phase space from chaotic behavior at laeg regular
we will call it a threshold This is consistent with the results behavior at smalle; (iii) the ST shows a weak but clear
of Fig. 4, where the largest Lyapunov exponents are reportedependence oN (provided the wavelength of the initial ex-
for the same cases as in Fig. 3. We have used a cutoff of theitation is kept constahtThis is not surprising because if we
integration time at=4.3x 10%. After such a long time, when combine two identical systems—each with the same initial
e was smaller than the threshold value, no separation beexcitation—the composite system will have new low fre-

C. Stochasticity threshold
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quency modes that are absent in the separate subsystem: 102
which can be expected to facilitate the mechanism of energy E

exchange among the normal modes. 107 — —
As far as we are aware, thirect evidence given in Fig. i :
4 of the existence of a ST &i>2, obtained through the 107 E .

behavior of the largest Lyapunov exponent, was never found -~

T T

before in nonlinear Hamiltonian systems. Amdirect sug- ~—, 107 E

gestion of its existencghrough a “freezing” of the decay of < .

the spectral entropyhas been given if8] for the FPUB 107° 3

model. P :

107 e 3

D. Coexistence of order and chaos . i f v o ]

A question now arises: does such a threshold refer to a 0 107 107! !

global property of the constant energy surface or is it, €

rather, a local property dEg sensitive to the initial condi- FIG. 5. The largest Lyapunov exponenig(e) are plotted, for
tion? N=32, at different values ok and different initial conditions.

In order to answer this question, we have considered alsgquares refer to the casés:0 and no random initial conditions,
the following initial conditions alN=232: (i) A#0 [the fun-  asterisks refer to the casés=0 and random initial conditions,
damental mode—Eq4)—is excited with amplitudes rang- starlike squares t&\#0 and random initial conditions with zero
ing fromA=0.7 toA=5.5] andp;(0)#0 (i=1,... N) are  mean and standard deviation 0.001. The endpoints of the broken
Gaussian random numbers with zero mean and standard dees, marked by arrows, are upper bounds for the FPU Lyapunov
viation (“temperature” equal to 0.001; (i) A=0, exponents at=4.3x 10° (cutoff of the integration timpe
gi(0)=0 (i=1,... N), andp;(0) (i=1,...N) are ran-
domly chosen according to a Gaussian distribution.  geparate and exhibit a coexistence of regular and chaotic re-
In the first case, a fraction of the energy in the initial gions on the constant energy surface in phase space, whose
excitation is given to all the normal modes of the system: injetajls depend on the initial conditions. Below

so doing, we are displacing the starting pointXya propor- .~ 1 8x 103, even with only random initial conditions, the
tional to the magnitude of the standard deviation of the noisyotions are regulafstarlike squares

component of the initial excitation. This is intended to pro-  This tells us that the phase space undergoes some impor-
vide some information about the extension of the regulagant structural change as a function of the energy, in analogy
regior(s) in phase space. If all, or almost all, the energy ofith what is observed in two-degrees-of-freedom systems,
the initial excitation is concentrated in one or a few modes;jke the Haon-Heiles mode[21], where fully developed
then we are dealing with a nonequilibrium initial condition; chaos, a coexistence of regular and chaotic regions of phase

the existe_n.ce_ of a ST entails then that a system, p_repared gbace, or only regular trajectories, are observed, depending
a nonequilibrium state below such a threshold, will appeag, the value of the energy.

never to attain equipartition of the energy of the initial exci-

tation. The noisy component has a self-evident physical
meaning related to the impossibility of preparing any physi-
cal system in a perfectly ordered initial state: at nonzero An important question is the stability or instability of the
temperature some randomness in the initial conditions is urstochasticity threshold witN. To this end we have numeri-

E. N dependence of the stochasticity threshold

avoidable. cally determined\;(e,N) atN=28,16,32,64 always choosing
The second choice—completely random initial condi-random initial conditions, i.e.,{g;(0)=0, p;(0)=r;},
tions—mimicks a physical situation that corresponds to da=1, ... N, with r; Gauss-distributed random numbers with

crystal prepared at an assigned temperatiee, mean ki- zero mean and variancg2e (after the assignment of the
netic energy per degree of freedpat thermal equilibrium. random valueg;, the momenta are adjusted, by rescaling
In Fig. 5 the effect of changing the initial conditions ac- them, in order to obtain a fixed initiad).
cording to the above prescriptions is shown. Hdre 32, the In Fig. 6 the outcome of these computations is reported.
squares refer t&# 0 and no random component, the aster-The endpoints of the broken lines have the same meaning as
isks refer to only random initial excitations, and the starlikealready discussed above. At largéhere is a tendency of all
squares refer téd#0 plus a random component. the sets of points to join. This fact is most evident for
In each case a threshold ener@y equivalently energy N=32 andN= 64 which have a line segment in common and
density, sinceN is fixed) is found. Ate>0.01, the uncertain- then separate at smadt the largerN, the smaller thes at
ties in the determination of, are of the order of the size of which the separation occurs.
the symbols used; &< 0.01, an estimate is difficult because At eachN, we take as a rough estimate of the stochastic-
of unpredictable fluctuations of;(t) that could be reduced ity thresholde. the value ofe at the midpoint between the
only by prohibitively long integration times. Nevertheless, two lowest points on each curve, because the lowest point
the information given by Fig. 5 is unambiguous. Down to (marked by an arropis presumably below threshold.
€=10 2 all the values of\;(¢), obtained with different ini- Figure 7 then shows that for these threshold valegs
tial conditions, crowd along the same line; belew10"2  plotted vSN holds: e(N)~1/N2. This result is interesting
the values of\;, obtained with different initial conditions, for the following reasons.
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107 g predict anN dependence which is in much better agreement
" "] with our results than the exponential drop withmentioned
107 3 *g‘?ﬁ{;“% E in the preceding point.
) /)(/ 4
0 i /&‘ 3 IIl. DISCUSSION
2 -5 L /; ?(/ // . .
B 107 E K vﬁ* 3 We conclude with the following remarks.
< - _ ){/x J/ X// ) _ (|.) It |§_worth mentioning tht recen.tly the §X|stence of an
3 5 Sk 7 ' equipartition threshold vanishing at mcreasnfilg_has also
o b K;/ / b ! ] bgen reported for the FP)3 modeI[S,ZfS,ZG. I_t is inappro-
S/ % { ¢ priate t_o compare these res_uda;santltatlvelywnh ours: our
10 & y 4 model is different and the evidence for a stochasticity thresh-
S — T . 51 old for the FPU B model has been obtained indirectly,
107® 1072 107

through the opening of a local trap in phase space, which
prevented equipartition. However, we can say that both re-

FIG. 6. The largest Lyapunov exponentg(e,N) are plotted vs ~ Sults are inqualitative agreement: threshold effects, either
the energy density, for different values oN. Random initial con-  CONcerning transient dynamics to equipartition of nonequilib-
ditions are chosen. Starlike polygons refer No=8, crosses to fium initial conditions(studied through spectral entropgr
N= 16, asterisks tdN= 32, starlike squares th= 64, respectively. ~concerning the dynamics of equilibrium initial conditions
The endpoints of the broken lines, marked by arrows, are uppestudied through\;(e,N)], vanish at increasindy.
bounds for the FPU Lyapunov exponents at4.3x 10° (cutoff of A qualitative agreement about the vanishing witlof the
the integration timge critical energy to get chaos is reported in a recent paper on

) ) o ~ the FPUa model[27].

(i) The threshold values vanish sufficiently fast with in- e question of how to explain the existence and the
creasingN, so that the existence of regular regions of phase /N2 dependence of the stochasticity threshold reported here,
space belove, does not constitute a problem fequilibrium  remains open.
statistical mechanics. In fact, it appears that (j)n this paper we report the existence of two interesting
N=32,...,128 is not too small to obtain indications, if not phenomena among others: the apparent existence of regular
“confirmation,” of the statistical mechanical behavior of the regions in the phase space of a nonintegrable Hamiltonian
FPU « system. system as is the FPd model and the existence of almost

(i) Both the values ofe; and the N dependence reqgular regions of phase space where the trajectories are
e:(N)~1/N? can hardly be explained on the basis of the bestrapped during long but finite times. These phenomena are
available estimate of the perturbation amplitudes for which geminiscent of the KAM and Nekhoroshd28] theorems,
positive measure of the regular KAM regions in phase spacgespectively. We have already discussed throughout the pa-
exists: 4 < u.~aexp(—bNInN) [23], whereu measures the per why our results disagree with the present-day quantita-
relative strength of the anharmonic to the harmonic part of qive predictions of the KAM theorem. Similarly, the
given Hamiltonian f depends one), u. is a threshold Nekhoroshev theorem does not seem to be able to provide an
value,a andb are constants. There are also power-law estiexplanation of the observed phenomenology as well. In fact,
mates foru(N), i.e., u(N)~N~?, obtained in the context without entering into the details of how a thorough compari-
of KAM theory [24]; however, at present is still very  son with our results could be made, Nekhoroshev’s estimate
large: 6= 160. of the lower bound of the “trapping” timd of a trajectory

(i) The bounds on the threshold value dfN<e; close to its initial condition isT=expE/w)"™, wherec is a
<1/2a°N found by Enzet al. for the FPUa model [22]  constant, » has the same meaning as above, and

v(N)~1/8N is the optimalN dependenc§29] of the expo-

S L B T nent. Hence foN=32,64,128, as is the case of the results of
i Fig. 3 for 71(€,N), the “Nekhoroshev trapping” timd is
O(1) independently ofx (thus of €). Therefore, it appears
that the physical mechanisms responsible for finite time trap-
kY ping in phase space, which are behind the Nekhoroshev theo-
o T 1 rem and our numeric phenomenology, respectively, are dif-

1 ferent. Thus we emphasize the difference between, on the
e 1 one hand, the approach to infinite time trappiKg\M theo-
-6 7] rem) and to finite time trappingNekhoroshev theorem

I ] based on the description of the persistence of certain local
] properties of regular regions of phase space, and, on the

i ] other hand, our chaos-related approach, based on the com-
- e — parison of\(t) for the FPU and Toda lattice&ig. 1). The

In N behavior ofA;(t) suggests that the sudden escape from the
regular region occurs as if the trajectory would eventually

FIG. 7. The values of the stochasticity threshoddsare plotted  find a “hole” in its boundary.
for different values oN (for the estimate ok, see text (iii ) It is not out of place to note that while the ST drops

€

In €
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to zero adN—x in the FPUa model, there is another tran-
sition phenomenon that does not suffer tNislependence: it
is the strong stochasticity thresho{8ST) that concerns a
transition from weak to strong chafik5,16, which has been
discovered in the FPB model and in the lattice* model.
Unfortunately, this SST cannot be investigated in the FPU
a model because the cubic potential prevents working at too
large energy. We note, however, that the stability whitlof

the SST makes the SST not only a dynamical phenomenon
related to dynamical chaos, but also of potential interest to
statistical mechanical phenomena.

(iv) The existence of special initial conditions that create
nontrivial dynamical behavior, though irrelevant fequilib-
rium statistical mechanics because of their negligible mea-
sure, could be physically relevant for transiemnequilib-
rium statistical mechanics if we can conceive an operational
method to prepare a real system in such a special initial state
(see, for exampld,30]).

(v) Let us comment about the classical explanation of the
nonstatistical mechanical behavior of the FPU model pro-
posed by Zabuskegt al.[3,4], based on the existence of soli-
ton solutions of the Korteweg—de Vri¢kdV) equation, de-
rived as a special continuum limit of the FRIUmodel. Their
experiments were carried out over much shorter time scales
than those that are possible nowadays. As we have seer
above, thanks to very long numerical integrations, it turns
out that, below a threshold, regular regions of phase space
can coexist with chaotic ones. In light of our results, we can
thus assert that the KdV soliton solutions belong to the regu-
lar region of phase space of the FPU system from which—
after sufficiently long time—escape will occur to the chaotic
component of phase space.

In Fig. 8 the patterns of the displacemeqtss a function
of position i are shown at different times in the case
N=32, A=3. For timest below the trapping time
Tr=4X 10, they are looking as regular structures, appar-
ently composed of a superposition of a small number of
waves, which display a trapping and a solitonlike recurrence
[see Fig. &)], similar to that observed by Zabusky and
Kruskal [3] and Tuck and Menz€l31], although we have
fixed boundary conditions, as in FPU’s original paper, rather
than periodic boundary conditions as considered by Zabusky
and Kruskal. Fot> 1 we observed a gradual untrapping or
decay of these regular features due to more and more com-
plicated structures consisting of a superposition of an in-
creasing number of different wavésidiated by the decaying
solitons[4]). Finally, for t>10°, an almost noisy pattern is
attained[see Fig. &)] as well as energy equipartitiaie-
tected through the spectral entrgpyThis demonstrates
clearly the compatibility of the existence of trapping, i.e.
very long-lived regular solutions, and the attainment of
equipartition, albeit after possibly very long times. It is still

'5x 10

: . > 2 t=1.6x10°
an open question whether, at fixiid below the stochasticity ;..o qer of
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FIG. 8. Snapshots of the displacemegit®f 32 FPU« particles

as a function of position along the chain shown at different times.
Here the initial amplitude i®\=3—as in Fig. 1—for a sine wave
[see Eq.(4)]. (a) Ordered configurations at=0 (1), 10* (Il), and
(IN); (b) Ordered configurations at=10° (1), 2x10° (II),
and 4.2 10 (lll); note the almost recurrence &t2x 10 (c)
(1), 5.4x 107 (1), and 2< 1 (lll). Note the increasing
the configurations i), corresponding to the onset of a

threshold, i.e., at energy density such that the largest,,qiic dynamics in the system, due to the breakup of regular soli-
Lyapunov exponent seems to vanish for any initial condition,jike structures, and to its approach to equipartition.

the lifetime of regular solutions might actually diverge.
However, we have found that this threshold energy den-
sity drops to zero as-1/N2. Therefore it appears to us that at

system.
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