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The Fermi-Pasta-Ulam problem revisited:
Stochasticity thresholds in nonlinear Hamiltonian systems
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The Fermi-Pasta-Ulama model of harmonic oscillators with cubic anharmonic interactions is studied from
a statistical mechanical point of view. Systems ofN532 to 128 oscillators appear to be large enough to suggest
statistical mechanical behavior. A key element has been a comparison of the maximum Lyapunov coefficient
lmax of the FPUa model and that of the Toda lattice. For generic initial conditions,lmax(t) is indistinguish-
able for the two models up to times that increase with decreasing energy~at fixed N). Then suddenly a
bifurcation appears, which can be discussed in relation to the breakup of regular, solitonlike structures. After
this bifurcation, thelmax of the FPU model appears to approach a constant, while thelmax of the Toda lattice
appears to approach zero, consistent with its integrability. This suggests that for generic initial conditions the
FPUa model is chaotic and will therefore approach equilibrium and equipartition of energy. There is, how-
ever, a threshold energy densityec(N);1/N2, below which trapping occurs; here the dynamics appears to be
regular, solitonlike, and the approach to equilibrium—if any—takes longer than observable on any available
computer. Above this threshold the system appears to behave in accordance with statistical mechanics, exhib-
iting an approach to equilibrium in physically reasonable times. The initial conditions chosen by Fermi, Pasta,
and Ulam were not generic and below threshold and would have required possibly an infinite time to reach
equilibrium. The picture obtained on the basis oflmax suggests that neither the KAM nor the Nekhoroshev
theorems in their present form are directly relevant for a discussion of the phenomenology of the FPUa model
presented here.@S1063-651X~97!15105-4#

PACS number~s!: 05.45.1b; 05.20.2y
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I. INTRODUCTION

Few problems have been studied so extensively over
cent decades as the one devised originally by Fermi, Pa
and Ulam~FPU! in 1954 @1#. Their purpose was to chec
numerically that a generic but very simple nonlinear ma
particle dynamical system would indeed behave for la
times as a statistical mechanical system, that is, it wo
approach equilibrium. In particular, their purpose was to
tain the usual equipartition of energy over all the degrees
freedom of a system, for generic initial conditions. To th
surprise, for the system FPU considered—a one-dimensi
anharmonic chain of 32 or 64 particles with fixed ends, a
in addition to harmonic, cubic (a model! or quartic (b
model! anharmonic forces between nearest neighbors—
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was not observed. A variety of manifestly nonequilibriu
and nonequipartition behaviors was seen, including qua
eriodic recurrences to the initial state. In fact, a behav
reminiscent of that of a dynamical system with few degre
of freedom was found, rather than the expected statist
mechanical behavior. The duration of their calculations v
ied between 10 000 and 82 500 computation steps. Th
results raised the fundamental question about the validity
at least the generally assumed applicability of statistical m
chanics to nonlinear systems of which the system conside
by FPU seemed to be a typical example. Most of the
tempts to clarify this difficulty have approached the proble
as one in dynamical systems. These analyses have reve
many very interesting properties of the FPU system and
covered a number of possible explanations for the resolu
of the observed conflict with statistical mechanics. The cl
sical explanations are~i! the survival of invariant tori in the
phase space of a quasi-integrable system~KAM theory! @2#,
~ii ! the existence of Zabusky and Kruskal’s solitons in t
KdV continuum limit @3,4#, ~iii ! the existence of an order-to
chaos transition@5#. However, we do not believe that th
problem has as yet been entirely resolved. In particular,
the purpose of this paper to try to clarify the problem from

:
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55 6567THE FERMI-PASTA-ULAM PROBLEM REVISITED: . . .
statistical mechanical point of view. That is, we will try t
exhibit the reasons why this apparentlybona fidestatistical
mechanical system did not behave as such and, in partic
what in our opinion the significance of this apparent failu
is for the general validity of statistical mechanics.

There are a number of obvious questions related to
unstatistical mechanical behavior observed by FPU, wh
all address the generic nature of their results.

~a! Was their time of integration long enough?
~b! Was their dynamical system ofN532 or 64 particles

in one dimension large enough, i.e., possessing a suffic
number of degrees of freedom, to qualify as a statistical m
chanical system?

~c! Were the recurrence phenomena~to within 3%) ob-
served by FPU, transient, or generic, i.e., possibly relate
a Poincare´ recurrence time?

The search for answers to these questions made the
of FPU very seminal, spawning many new developments
connections in the theory of nonlinear dynamical syste
such as the connection with continuum models based on
Korteweg–de Vries equation, leading to solitons@3#, heavy
breathers, etc., or with few degrees of freedom models,
the Hénon-Heiles and the Toda lattice@6#. For a recent re-
view we refer to@7#.

The approach to equilibrium of the FPUb model was
studied extensively for various classes of initial conditio
by Kantzet al. @8# and recently by De Lucaet al. @9#. A very
detailed picture has emerged from their work, as to the
havior of the FPUb model in its dependence on nonequili
rium initial conditions as well as the role played by lo
frequency and high frequency mode-mode couplings@10#
during its time evolution. Two threshold energies were ide
tified, but the connection of all the very interesting and d
tailed information obtained with the generic statistical m
chanical behavior of the FPUb model remains unclear s
far.

Thus, although the effort to resolve the so-called F
problem has led to enormous advances in our understan
of nonlinear dynamical systems, it has not yet, in our op
ion, led to a full evaluation of the statistical mechanical r
evance of the FPU paradox, i.e., FPU’s original question
not yet really been answered.

It is commonly asserted@7# that the KAM theorem pro-
vides the essential answer to FPU’s observations, i.e.,
sufficiently small nonlinearities and a class of initial cond
tions living on nonresonant tori, the FPU system beha
like an integrable system and is represented by deformed
in phase space. With increasing strength of the nonline
ties, a progressive chaotic behavior appears, which wo
ultimately lead to the expected approach to equilibrium a
equipartition@11#.

Even though there are regular regions in phase space
existing estimates based on the KAM theorem are qua
tively different from what we found, indicating that the phy
ics of the FPU model is quite different from what is co
tained in these estimates. This makes us believe, on the
of our numerical simulations, that it is the very special init
conditions chosen by Fermi and collaborators that make t
system belong to a regular region of phase space. If they
chosen an initial excitation ten times larger, they could ha
observed equipartition. This takes place via a disappeara
ar,

e
h

nt
e-

to

rk
d
s,
he

e

s

e-

-
-
-

ing
-
-
s

or

s
ri
ri-
ld
d

the
-

sis
l
ir
ad
e
ce

with increasing initial amplitude of a threshold, whoseN
dependence is entirely different from that estimated in
KAM theory framework. Hence the source of FPU’s failu
is the fortuitous choice of initial conditions in a regular re
gion of phase space, below this critical energy.

Thanks to the power of modern computers, we have c
siderably extended the calculations performed in the pas
various authors. We have been able to reconcile differe
and sometimes contradictory, aspects of the FPU dynam
finding that regular regions and a large ‘‘chaotic sea’’ c
coexist in phase space. The lack of equipartition in the or
nal FPU experiment is not representative of a global prope
of phase space: apparently regular, solitonlike structu
similar to those of Zabusky and Kruskal, have a very lon
possibly infinite, lifetime below a stochasticity threshol
whereas, above the same threshold, they have only a fi
lifetime.

By choosing more physically generic initial condition
i.e., random positions and momenta, a threshold energy
the onset of chaos is detected, showing a rather strong
dency to vanish at an increasing number of degrees of fr
dom. Thus we have found strong evidence in support of
point of view that the so-called ‘‘FPU-problem’’ does no
invalidate the~generic! approach to equilibrium and the va
lidity of equilibrium statistical mechanics. On the other han
the existence of long-living initial states far from equilibrium
may well have interesting, nontrivial physical implications

II. MODEL AND RESULTS

We have considered a one-dimensional lattice of u
mass particles interacting via nearest-neighbor forces w
unit harmonic coupling constant, with fixed endpoin
(q15qN1150) and described by the Hamiltonian

H~p,q!5 (
k51

N F12 pk21 1

2
~qk112qk!

21
a

3
~qk112qk!

3G ,
~1!

which is known as the FPUa model. We can think of Eq.~1!
as the first anharmonic approximation to physical interatom
potentials of the Morse or Lennard-Jones type.

The cubic term is obviously responsible for the ener
exchange among the normal modes of the harmonic par
Eq. ~1!. The normal mode coordinates, obtained by a st
dard orthogonal transformation, read

Qk5S 2ND 1/2(
i51

N

qisin
ikp

N
~2!

and diagonalize the harmonic part of Eq.~1!.
The Hamiltonian in these new coordinates becomes

H~P,Q!5 (
k51

N F12Pk
21

1

2
vk
2Qk

2

1a (
k8,k951

N

C~k,k8,k9!QkQk8Qk9G , ~3!
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6568 55CASETTI, CERRUTI-SOLA, PETTINI, AND COHEN
wherevk52sin(kp/2N) is the frequency of thekth normal
mode andPk5Q̇k are the conjugated momenta. The natu
unit of time with the choice of the units of Eq.~1! is given by
the inverse of the fastest frequency of the harmonic par
Eq. ~1!: Tmin52p/vmax[p. In what follows t51 corre-
sponds to 1/p of this fastest linear period.

We have numerically integrated this model by means o
very efficient third order bilateral symplectic algorithm@12#
that ensures a faithful representation of a Hamiltonian fl
and, with the adopted values of the rather large time s
ranging from 0.01 to 0.1, keeps the total energyE constant
within an average fluctuation level ofDE/E.1028 without
drift. Such a high precision in numerical integration mak
the outcome of the very long runs that are reported in
following reliable. The coupling constant wasa50.25. In
order to give an idea of the computational effort that w
necessary to obtain the results reported in this paper, le
mention that the computation of the largest Lyapunov ex
nentsl1 at low energy typically required integration times
the interval 107–109 natural units of time: the longest run
lasted about 60 h of CPU time on an HP9000/735 comp
~about the same CPU time would be necessary on a CR
Y-MP computer!. The CPU time amounted to about 4000
on the following computers: HP 9000/735, HP 9000/71
Sun SPARC10, Sun SPARC5, Digital Alphaserver 20
4/200.

For what concerns the initial conditions, we begin
choosing single mode excitations as Fermi and collabora
did in their original experiment, i.e., the initial displacemen
of the particles from their equilibrium positions are given
the fundamental mode

qi~0!5AsinS 2pni

N D , i51, . . . ,N, ~4!

and the initial momentapi(0)50 for i51, . . . ,N. Fermi
et al. usedN532,A51, and mode numbern51.

Now the main question is, if we repeat the original e
periment, do we have any chance to find equipartition or
clear tendency to it by using present-day fast computers

To answer this question we cannot blindly make the lo
est integration of the trajectories of the Hamiltonian~1! that
we can afford on a very fast computer: the absence of e
partition, even after a very long integration time, would n
be by itself conclusive for the nonexistence of equipartit
for this model. Rather, one should make an estimate of
equipartition time atA51 andN532, and determine theA
dependence of this time for larger values ofA: a large initial
excitation amplitude makes the anharmonicity of the sys
larger, hence the mode-mode couplings stronger, so th
faster relaxation to equipartition can be expected.

A. Detecting energy equipartition

A possible method to numerically detect equipartition
energy makes use of the spectral entropy@13# defined by

S~ t !52 (
k51

N

wk~ t !lnwk~ t !, ~5!
l
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where the weightswk are given by the fraction of the tota
harmonic energyEk5

1
2(Pk

21vk
2Qk

2) in thekth normal mode
@14#,

wk~ t !5
Ek~ t !

(
i
Ei~ t !

~6!

so thatS(t) reaches its maximum value when equipartition
attained. This entropy can be normalized as follows:

h~ t !5
S~ t !2Smax
S~0!2Smax

, ~7!

henceh51 detects a ‘‘freezing’’ of the initial condition and
h50 detects equipartition.

By following the time relaxation ofh(t) we have ob-
tained some estimates of the equipartition timetE at values
of the initial excitation amplitudeA ranging from 3 to 11.
Note thatA cannot be too large, since then the cubic part
the potential becomes repulsive and the phase space tr
tories are ‘‘runaway’’ trajectories, nor canA be too small,
since then the relaxation times become too large to be de
mined by our computations. However, two major difficulti
arise with theh method:~i! contrary to previously investi-
gated systems@15,16#, the relaxation pattern ofh(t) does not
show clearly when equipartition sets in, so that the equip
tition time is a fuzzy quantity,~ii ! if we somehowdefinethe
equipartition time by, for example, measuring the tim
needed forh(t) to drop below a threshold value, sa
h50.1, we find thattE(e);e23 (e5E/N is the energy den-
sity!. For the FPU case (A51, e50.002 41), we will show
~see Sec. II B! that the equipartition time is far too long
time for numerical tests, since it would amount to abou
year’s CPU time.

B. Phase space trapping

We have been able to overcome these difficulties by
cusing on the development of chaoticity in the time evoluti
of the system rather than on the attainment of equipartiti

The natural way of characterizing chaotic motions is
compute the largest Lyapunov exponentl1. Let us briefly
remember its definition. Let

ẋi5Xi~x1, . . . ,xN!, i51, . . . ,N ~8!

be a given dynamical system, and denote by

j̇ i5 (
k51

N

Jki@x~ t !#jk, i51, . . . ,N ~9!

its tangent dynamics equation,@Jki #5@]Xi /]xk# is the Jaco-
bian matrix of@Xi #, then the largest Lyapunov exponentl1
is defined by

l15 lim
t→`

1

t
ln

ij~ t !i
ij~0!i . ~10!
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55 6569THE FERMI-PASTA-ULAM PROBLEM REVISITED: . . .
By setting L@x(t),j(t)#[jTJ@x(t)#j / jTj5jTj̇ / jTj
5 1

2 (d/dt)ln(j
Tj), l1 can be formally expressed as a tim

average,

l15 lim
t→`

1

2tE0
t

dtL@x~t!,j~t!#, ~11!

which, in practice, is evaluated by computing@17#

l1~ tN!5
1

NDt(n51

N

lnS ij~ tn!i
ij~ tn21!i D , ~12!

wheretn5nDt (Dt is some time interval!, up to a final time
tN , n5N, such thatl1(tN) has converged to a reasonab
asymptotic value@18#. A positive asymptotic value ofl1
obviously detects a chaotic dynamics, whereasl1(t);t21

corresponds to a nonchaotic dynamics.
We have exploited the existence of an integrable mo

the Toda lattice, close to the FPUa model. The Toda lattice
Hamiltonian reads, in the same units as used in Eq.~1!,

H~p,q!5 (
k51

N F12 pk21 1

4a2 $exp@22a~qk112qk!#

12a~qk112qk!21%G , ~13!

and the power series expansion of its potential coincides
to third order, with the potential part of Eq.~1!.

As the Toda lattice Hamiltonian describes an integra
system, the numerical computation of the time behavior
the largest Lyapunov exponentl1(t) must reveal the non
chaotic property of its dynamics. In particular, one mig
wonder whether some information can be obtained by co
paringl1

FPU(t) with l1
Toda(t) for the same initial conditions

i.e., $qi(0),pi(0)%, i51, . . . ,N. This turns indeed out to be
the case. In Fig. 1 we report, as an example,l1

FPU(t) and
l1
Toda(t) in the caseN532 ande50.0217 for an initial con-

dition with A53 in Eq. ~4!. Up until t.23105 these two

FIG. 1. l1
FPU(t) ~solid triangles! andl1

Toda(t) ~squares! are plot-
ted vs time forN532 and energy densitye50.0217@which corre-
sponds to an initial excitation amplitudeA53 in Eq.~4!#. Dividing
t on the horizontal axis byp gives the time in units of the fastes
period of the harmonic part of the chain,Tmin5p.
l,

p

e
f

t
-

functions are so close to each other that the two are virtu
indistinguishable. Then, suddenly, they separate
t>43105: l1

Toda(t) continues its decay toward zero, where
l1
FPU(t) tends to converge to a nonvanishing value. T

makes it possible to define clearly what a trapping time i
regular region of phase space is; moreover, its numer
determination is unambiguous, as it can be deduced by s
ply looking at Fig. 1. We attribute this dramatic difference
the untrapping of the FPU system from its regular region
phase space by escaping to the chaotic component o
phase space.

The peculiar behavior ofl1
FPU(t) suggests therefore tha

nonintegrable motions, originated by one-mode initial ex
tations, after a transient, possibly long, trapping in a regu
region of phase space, enter its chaotic component. The
otic component of phase space, by the Poincare´-Fermi theo-
rem @19#, is connected, so that we may well expect th
equipartition is eventually attained on a finite, albeit possi
very long, time scale.

The precise nature of the trapping mechanism is unc
to us. One could either think that the trajectories stick clo
to a KAM torus during the trapping time, or that, for ex
ample, they are geodesics of a bumpy manifold to which
N-torus has been differentiably glued by a tiny ‘‘bridge;’’ i
that case a geodesic, originating at any point of
N-torus, is locally stable until it finds a path to escape fro
the torus. Another possible mechanism of trapping and
cape is discussed in Sec. III under point~v!, in light of the
data discussed in the sequel of the present Section.

In conclusion, once we observe that a trajectory enters
chaotic component of phase space, we are allowed to th
that equipartition will be eventually attained. In Fig. 2 th
relaxation times to equipartitiontE(e) and the trapping times
tT(e), evaluated for the FPUa model, are shown. The re
sults refer toN532 and initial conditions given by Eq.~4!.
The initial excitation amplitudesA range from 3 to 11. The
equipartition times appear to be between one and two or
of magnitude larger than the trapping times. If we extrap

FIG. 2. The relaxation times to equipartition~full squares! and
the trapping times~open squares! are plotted~for the FPUa model!
vs the energy densitye for N532 and the initial conditions of Eq
~4!. The initial excitation amplitudes considered are, from left
right, A52,3,4,5,8,10,11, respectively. The asterisk represents
extrapolation of the equipartition time to the caseA51 ~FPU’s
original paper@20#!.
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6570 55CASETTI, CERRUTI-SOLA, PETTINI, AND COHEN
late @20# the equipartition time to the case of FPU, we fin
tE.431010 ~as is indicated in Fig. 2 by an asterisk!.

Since we can consider the FPUa model as a third orde
expansion of a Lennard-Jones potential around its minim
we can tentatively extrapolate the equipartition times
ported in Fig. 2 to a macroscopic system in three dimensio
As an example, we can roughly estimate what the phys
equipartition time could be for aclassicalxenon crystal at
zero temperature and only one normal mode initially excit
At e50.01,tE;109 proper times~see Fig. 2! corresponds to
about 1023 s, using as proper time, obtained with standa
Lennard-Jones parameters for xenon, 2.4310212 s.

C. Stochasticity threshold

We have evaluated the trapping timestT(e,N) for the
FPUa model at different values of both the energy dens
e and of the number of degrees of freedomN. WhenN was
varied, we kept the wavelength of the initial excitation co
stant @i.e., n in Eq. ~4! is taken proportional toN: n51 at
N532,n52 atN564, andn54 atN5128#, and we excited
only one mode att50. The results are reported in Fig.
With decreasinge, first tT tends to increase monotonically
then, abruptly, it displays an apparently divergent behav
In fact, when reaching critical threshold values, a very sm
change ine suddenly gives an extremely steep increase
tT. This very steep increase oftT with decreasinge suggests
at least a very narrow bottleneck in phase space, thro
which the system can only escape with great difficulty. W
assume that this bottleneck is not an insurmountable bar
and for that reason, as well as to conform with previous u
we will call it a threshold. This is consistent with the result
of Fig. 4, where the largest Lyapunov exponents are repo
for the same cases as in Fig. 3. We have used a cutoff o
integration time att54.33108. After such a long time, when
e was smaller than the threshold value, no separation

FIG. 3. The trapping timestT(e,N) at different values of energy
densitye ~i.e., at different values of the initial excitation amplitude
A), are reported. Open squares refer to the caseN532 (A ranges
from 1.6 to 11!, solid triangles refer toN564 (A ranges from 1.4 to
10!, open circles refer toN5128 (A ranges from 1.25 to 9!, respec-
tively. The endpoints of the broken lines are lower bounds for
trapping time ~the cutoff of the integration time is a
t54.33108). The dotted vertical line ate50.002 41 corresponds to
the initial excitation amplitudeA51 of FPU’s original paper.
,
-
s.
al
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d

-

r.
ll
n

gh
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d
he

e-

tweenl1
Toda(t) andl1

FPU(t) has been observed: the values
l1
FPU at t54.33108 ~endpoints of broken lines in Fig. 4

marked by arrows! are taken as upper bounds for the FP
Lyapunov exponents andt54.33108 is taken as a lower
bound for the trapping time of the FPU-phase point~end-
points of the broken lines in Fig. 3, marked by arrows!. Both
l1(e,N) ~from here on, byl1 we meanl1

FPU) andtT(e,N)
strongly suggest the existence of anN-dependent threshold
value of the energy~density!, above which the motion is
chaotic and below which the trajectories appear to be trap
in a regular region of phase space@stochasticity threshold
~ST!#.

The following approximate relationship betweenA and
e holds: e.0.002 41A2, therefore the threshold amplitude
Ac leading to chaos areAc(N532).1.62, Ac(N564)
.1.42,Ac(N5128).1.28, respectively.

The dotted line ate50.002 41 corresponds to the initia
excitation amplitudeA51 of FPU’s original paper. We se
that Fermi and co-workers chose an initial condition w
below this ST@20#. Figure 3 shows that if they had taken
ten times larger amplitude, they would have observed eq
partition during the integration time they used. This appe
to us to be the explanation of the lack of statistical mecha
cal behavior observed in the original FPU numerical expe
ment.

A few more comments on these results are as follows:~i!
Fig. 3 suggests that with increasingN, tT(e,N) probably
becomes less dependent onN @in fact the values of
tT(e,N564) are closer to those oftT(e,N5128) than to
those oftT(e,N532)#; ~ii ! there is a narrow energy densit
interval wheretT andl1 oscillate, suggesting the transitio
in phase space from chaotic behavior at largee to regular
behavior at smalle; ~iii ! the ST shows a weak but clea
dependence onN ~provided the wavelength of the initial ex
citation is kept constant!. This is not surprising because if w
combine two identical systems—each with the same ini
excitation—the composite system will have new low fr

e

FIG. 4. The largest Lyapunov exponentsl1(e,N) are shown for
different values of the energy densitye and a sine wave initially
excited@Eq. ~4!#. Open squares refer toN532 andn51, full tri-
angles toN564 andn52, open circles toN5128 andn54, re-
spectively. The endpoints of the broken lines, marked by arro
are upper bounds for the FPU Lyapunov exponents att54.33108

~cutoff of the integration time!. The dotted vertical line at
e50.002 41 corresponds toA51 ~FPU’s original paper!.
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55 6571THE FERMI-PASTA-ULAM PROBLEM REVISITED: . . .
quency modes that are absent in the separate subsys
which can be expected to facilitate the mechanism of ene
exchange among the normal modes.

As far as we are aware, thedirect evidence given in Fig.
4 of the existence of a ST atN@2, obtained through the
behavior of the largest Lyapunov exponent, was never fo
before in nonlinear Hamiltonian systems. Anindirect sug-
gestion of its existence~through a ‘‘freezing’’ of the decay of
the spectral entropy! has been given in@8# for the FPUb
model.

D. Coexistence of order and chaos

A question now arises: does such a threshold refer t
global property of the constant energy surfaceSE or is it,
rather, a local property ofSE sensitive to the initial condi-
tion?

In order to answer this question, we have considered
the following initial conditions atN532: ~i! AÞ0 @the fun-
damental mode—Eq.~4!—is excited with amplitudes rang
ing fromA50.7 toA55.5# andpi(0)Þ0 (i51, . . . ,N) are
Gaussian random numbers with zero mean and standard
viation ~‘‘temperature’’! equal to 0.001; ~ii ! A50,
qi(0)50 (i51, . . . ,N), and pi(0) (i51, . . . ,N) are ran-
domly chosen according to a Gaussian distribution.

In the first case, a fraction of the energy in the init
excitation is given to all the normal modes of the system
so doing, we are displacing the starting point onSE, propor-
tional to the magnitude of the standard deviation of the no
component of the initial excitation. This is intended to pr
vide some information about the extension of the regu
region~s! in phase space. If all, or almost all, the energy
the initial excitation is concentrated in one or a few mod
then we are dealing with a nonequilibrium initial conditio
the existence of a ST entails then that a system, prepare
a nonequilibrium state below such a threshold, will app
never to attain equipartition of the energy of the initial ex
tation. The noisy component has a self-evident phys
meaning related to the impossibility of preparing any phy
cal system in a perfectly ordered initial state: at nonz
temperature some randomness in the initial conditions is
avoidable.

The second choice—completely random initial con
tions—mimicks a physical situation that corresponds to
crystal prepared at an assigned temperature~i.e., mean ki-
netic energy per degree of freedom! at thermal equilibrium.

In Fig. 5 the effect of changing the initial conditions a
cording to the above prescriptions is shown. HereN532, the
squares refer toAÞ0 and no random component, the ast
isks refer to only random initial excitations, and the starli
squares refer toAÞ0 plus a random component.

In each case a threshold energy~or equivalently energy
density, sinceN is fixed! is found. Ate.0.01, the uncertain-
ties in the determination ofl1 are of the order of the size o
the symbols used; ate,0.01, an estimate is difficult becaus
of unpredictable fluctuations ofl1(t) that could be reduced
only by prohibitively long integration times. Nevertheles
the information given by Fig. 5 is unambiguous. Down
e.1022 all the values ofl1(e), obtained with different ini-
tial conditions, crowd along the same line; belowe.1022

the values ofl1, obtained with different initial conditions
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separate and exhibit a coexistence of regular and chaotic
gions on the constant energy surface in phase space, w
details depend on the initial conditions. Belo
e.1.831023, even with only random initial conditions, th
motions are regular~starlike squares!.

This tells us that the phase space undergoes some im
tant structural change as a function of the energy, in anal
with what is observed in two-degrees-of-freedom syste
like the Hénon-Heiles model@21#, where fully developed
chaos, a coexistence of regular and chaotic regions of ph
space, or only regular trajectories, are observed, depen
on the value of the energy.

E. N dependence of the stochasticity threshold

An important question is the stability or instability of th
stochasticity threshold withN. To this end we have numeri
cally determinedl1(e,N) atN58,16,32,64 always choosin
random initial conditions, i.e., $qi(0)50, pi(0)5r i%,
i51, . . . ,N, with r i Gauss-distributed random numbers wi
zero mean and varianceA2e ~after the assignment of th
random valuesr i , the momenta are adjusted, by rescali
them, in order to obtain a fixed initiale).

In Fig. 6 the outcome of these computations is report
The endpoints of the broken lines have the same meanin
already discussed above. At largee there is a tendency of al
the sets of points to join. This fact is most evident f
N532 andN564 which have a line segment in common a
then separate at smalle: the largerN, the smaller thee at
which the separation occurs.

At eachN, we take as a rough estimate of the stochas
ity thresholdec the value ofe at the midpoint between the
two lowest points on each curve, because the lowest p
~marked by an arrow! is presumably below threshold.

Figure 7 then shows that for these threshold valuesec
plotted vsN holds: ec(N);1/N2. This result is interesting
for the following reasons.

FIG. 5. The largest Lyapunov exponentsl1(e) are plotted, for
N532, at different values ofe and different initial conditions.
Squares refer to the casesAÞ0 and no random initial conditions
asterisks refer to the casesA50 and random initial conditions
starlike squares toAÞ0 and random initial conditions with zero
mean and standard deviation 0.001. The endpoints of the bro
lines, marked by arrows, are upper bounds for the FPU Lyapu
exponents att54.33108 ~cutoff of the integration time!.
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~i! The threshold values vanish sufficiently fast with i
creasingN, so that the existence of regular regions of pha
space belowec does not constitute a problem forequilibrium
statistical mechanics. In fact, it appears th
N532, . . .,128 is not too small to obtain indications, if no
‘‘confirmation,’’ of the statistical mechanical behavior of th
FPUa system.

~ii ! Both the values ofec and the N dependence
ec(N);1/N2 can hardly be explained on the basis of the b
available estimate of the perturbation amplitudes for whic
positive measure of the regular KAM regions in phase sp
exists:m,mc;aexp(2bNlnN) @23#, wherem measures the
relative strength of the anharmonic to the harmonic part o
given Hamiltonian (m depends one), mc is a threshold
value,a andb are constants. There are also power-law e
mates formc(N), i.e.,mc(N);N2d, obtained in the contex
of KAM theory @24#; however, at present,d is still very
large:d.160.

~iii ! The bounds on the threshold value 1/4a2N<ec
<1/2a2N found by Enzet al. for the FPUa model @22#

FIG. 6. The largest Lyapunov exponentsl1(e,N) are plotted vs
the energy densitye, for different values ofN. Random initial con-
ditions are chosen. Starlike polygons refer toN58, crosses to
N516, asterisks toN532, starlike squares toN564, respectively.
The endpoints of the broken lines, marked by arrows, are up
bounds for the FPU Lyapunov exponents att54.33108 ~cutoff of
the integration time!.

FIG. 7. The values of the stochasticity thresholdsec are plotted
for different values ofN ~for the estimate ofec , see text!.
e

t

t
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predict anN dependence which is in much better agreem
with our results than the exponential drop withN mentioned
in the preceding point.

III. DISCUSSION

We conclude with the following remarks.
~i! It is worth mentioning that recently the existence of

equipartition threshold vanishing at increasingN has also
been reported for the FPUb model @8,25,26#. It is inappro-
priate to compare these resultsquantitativelywith ours: our
model is different and the evidence for a stochasticity thre
old for the FPUb model has been obtained indirectl
through the opening of a local trap in phase space, wh
prevented equipartition. However, we can say that both
sults are inqualitative agreement: threshold effects, eith
concerning transient dynamics to equipartition of nonequi
rium initial conditions~studied through spectral entropy! or
concerning the dynamics of equilibrium initial condition
@studied throughl1(e,N)#, vanish at increasingN.

A qualitative agreement about the vanishing withN of the
critical energy to get chaos is reported in a recent paper
the FPUa model @27#.

The question of how to explain the existence and
1/N2 dependence of the stochasticity threshold reported h
remains open.

~ii ! In this paper we report the existence of two interest
phenomena among others: the apparent existence of re
regions in the phase space of a nonintegrable Hamilton
system as is the FPUa model and the existence of almo
regular regions of phase space where the trajectories
trapped during long but finite times. These phenomena
reminiscent of the KAM and Nekhoroshev@28# theorems,
respectively. We have already discussed throughout the
per why our results disagree with the present-day quan
tive predictions of the KAM theorem. Similarly, th
Nekhoroshev theorem does not seem to be able to provid
explanation of the observed phenomenology as well. In f
without entering into the details of how a thorough compa
son with our results could be made, Nekhoroshev’s estim
of the lower bound of the ‘‘trapping’’ timeT of a trajectory
close to its initial condition isT.exp(c/m)g(N), wherec is a
constant, m has the same meaning as above, a
g(N);1/8N is the optimalN dependence@29# of the expo-
nent. Hence forN532,64,128, as is the case of the results
Fig. 3 for tT(e,N), the ‘‘Nekhoroshev trapping’’ timeT is
O(1) independently ofm ~thus of e). Therefore, it appears
that the physical mechanisms responsible for finite time tr
ping in phase space, which are behind the Nekhoroshev t
rem and our numeric phenomenology, respectively, are
ferent. Thus we emphasize the difference between, on
one hand, the approach to infinite time trapping~KAM theo-
rem! and to finite time trapping~Nekhoroshev theorem!
based on the description of the persistence of certain lo
properties of regular regions of phase space, and, on
other hand, our chaos-related approach, based on the
parison ofl1(t) for the FPU and Toda lattices~Fig. 1!. The
behavior ofl1(t) suggests that the sudden escape from
regular region occurs as if the trajectory would eventua
find a ‘‘hole’’ in its boundary.

~iii ! It is not out of place to note that while the ST drop

er
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to zero asN→` in the FPUa model, there is another tran
sition phenomenon that does not suffer thisN dependence: it
is the strong stochasticity threshold~SST! that concerns a
transition from weak to strong chaos@15,16#, which has been
discovered in the FPUb model and in the latticew4 model.
Unfortunately, this SST cannot be investigated in the F
a model because the cubic potential prevents working at
large energy. We note, however, that the stability withN of
the SST makes the SST not only a dynamical phenome
related to dynamical chaos, but also of potential interes
statistical mechanical phenomena.

~iv! The existence of special initial conditions that crea
nontrivial dynamical behavior, though irrelevant forequilib-
rium statistical mechanics because of their negligible m
sure, could be physically relevant for transientnonequilib-
rium statistical mechanics if we can conceive an operatio
method to prepare a real system in such a special initial s
~see, for example,@30#!.

~v! Let us comment about the classical explanation of
nonstatistical mechanical behavior of the FPU model p
posed by Zabuskyet al. @3,4#, based on the existence of so
ton solutions of the Korteweg–de Vries~KdV! equation, de-
rived as a special continuum limit of the FPUa model. Their
experiments were carried out over much shorter time sc
than those that are possible nowadays. As we have
above, thanks to very long numerical integrations, it tu
out that, below a threshold, regular regions of phase sp
can coexist with chaotic ones. In light of our results, we c
thus assert that the KdV soliton solutions belong to the re
lar region of phase space of the FPU system from whic
after sufficiently long time—escape will occur to the chao
component of phase space.

In Fig. 8 the patterns of the displacementsqi as a function
of position i are shown at different times in the ca
N532, A53. For times t below the trapping time
tT.43105, they are looking as regular structures, app
ently composed of a superposition of a small number
waves, which display a trapping and a solitonlike recurre
@see Fig. 8~b!#, similar to that observed by Zabusky an
Kruskal @3# and Tuck and Menzel@31#, although we have
fixed boundary conditions, as in FPU’s original paper, rat
than periodic boundary conditions as considered by Zabu
and Kruskal. Fort.tT we observed a gradual untrapping
decay of these regular features due to more and more c
plicated structures consisting of a superposition of an
creasing number of different waves~radiated by the decaying
solitons@4#!. Finally, for t.108, an almost noisy pattern i
attained@see Fig. 8~c!# as well as energy equipartition~de-
tected through the spectral entropy!. This demonstrates
clearly the compatibility of the existence of trapping, i.
very long-lived regular solutions, and the attainment
equipartition, albeit after possibly very long times. It is st
an open question whether, at fixedN, below the stochasticity
threshold, i.e., at energy density such that the larg
Lyapunov exponent seems to vanish for any initial conditi
the lifetime of regular solutions might actually diverge.

However, we have found that this threshold energy d
sity drops to zero as;1/N2. Therefore it appears to us that
sufficiently largeN the existence of KdV solitons does n
hinder a good statistical mechanical behavior of the F
system.
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